
[패캠/NLP] Transformer: 트랜스포머
·
ML & DL/NLP
0. 등장배경 Transformer: 트랜스포머는 2017년 구글이 발표한 "Attention in all you need"에서 발표된 모델로, Seq2Seq의 구조인 인코더 디코더 형태를 따르면서도 Attention으로만 구현된 모델이다. 이 모델은 RNN구조를 사용하지 않았음에도 번역 성능에서도 RNN보다 우수한 성능을 보여줬으며 지금까지도 다양한 분야에서 사용된다. RNN, LSTM, Seq2Seq 등의 언어모델들은 연속적인 입력에 대한 모델링을 개선하여 자연어처리 분야에서 많은 성과를 가져왔으며, Seq2Seq 등의 모델들은 시간에 의존적인 입력시퀀스에 따라 hidden state를 생성하여 입력을 처리하는 구조이며, 가변적인 입/출력을 처리하는데 효과적이었다. 그러나 고정된 크기의 context..