Random Forest: 랜덤포레스트
·
ML & DL/개념정리
0. 등장배경 Random Forest를 아주 간단하게 설명하자면, Decision Tree가 모여서 더 좋은 결과를 내는 모델이다. 자세하게 말하자면 Random Forest는 CART모델의 단점을 극복하기 위해 제시된 모델로서, Decision Tree 하나로는 training data에 너무 쉽게 overfitting 되고, 이에 여러 개의 Decision Tree를 사용하여 다수결을 사용하는 방식으로 보완하고자 하였다. 이렇게 단일 모델 여러 개를 모아서 더 좋은 판단을 하는 방법론은 `Model Ensemble`이라고 한다. 이때 단순 DT를 모은 것이 아니다. 왜냐면 같은 데이터에 대해서 만들어진 DT는 같은 결과를 출력하게 된다. 이에 다양성을 추가해 주기 위하여 2가지 기법을 사용하였다. ..