[패캠/NLP] BERT
·
ML & DL/NLP
0. BERT 등장 BERT는 Google의 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 논문에서 처음 제안된 모델로, 이전의 Transformer의 인코더 기반의 언어 모델이다. 우선 unlabeld data로부터 pre-train을 진행한 후, 전이학습을 하는 모델이며, 하나의 output layer을 pre-trained BERT에 추가하여 다양한 NLP task에서 SOTA를 달성하였다. 기존의 사전학습된 벡터 표현을 이용하는 방법은 크게 2가지가 존재하였다. 0-1. feature based approach 대표적으로 ELMo가 있으며, pre-trained representations를 하나의 ..
[패캠/NLP] 자연어 특성과 임베딩
·
ML & DL/NLP
1. 자연어의 특성 자연어를 기계가 처리하도록 하기 위하여 먼저 자연어를 기계가 이해할 수 있는 언어로 바꿔야 함. 이는 이전 글에서 작성했던 토큰화 작업의 결과인 단어 사전 Vocabulary를 기계가 이해할 수 있도록 표현해야 한다. -> 이 과정이 매우 어려움. 하나의 단어가 여러 뜻을 가지기 때문. 2. 단어의 유사성과 모호성 2-1. 단어의 형태 단어에는 다음과 같은 여러 가지 형태가 존재한다.-> _동형어_, _다의어_,_동의어_,_상위어_,_하위어_ 동형어: _동형어_란 형태는 같으나 뜻이 다른 단어로 _동음이의어_라고 부른다. ex) 먹는 배, 신체 부위 배 다의어:_다의어_란 하나의 형태가 여러 의미를 지니면서도 그 의미들끼리 서로 연관이 있는 단어. ex) 마음을 먹다, 음식을 먹다, ..